A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal
نویسندگان
چکیده
Caveolin-1 (CAV1) is an essential component of caveolae and is implicated in numerous physiological processes. Recent studies have identified heterozygous mutations in the CAV1 gene in patients with pulmonary arterial hypertension (PAH), but the mechanisms by which these mutations impact caveolae assembly and contribute to disease remain unclear. To address this question, we examined the consequences of a familial PAH-associated frameshift mutation in CAV1, P158PfsX22, on caveolae assembly and function. We show that C-terminus of the CAV1 P158 protein contains a functional ER-retention signal that inhibits ER exit and caveolae formation and accelerates CAV1 turnover in Cav1-/- MEFs. Moreover, when coexpressed with wild-type (WT) CAV1 in Cav1-/- MEFs, CAV1-P158 functions as a dominant negative by partially disrupting WT CAV1 trafficking. In patient skin fibroblasts, CAV1 and caveolar accessory protein levels are reduced, fewer caveolae are observed, and CAV1 complexes exhibit biochemical abnormalities. Patient fibroblasts also exhibit decreased resistance to a hypo-osmotic challenge, suggesting the function of caveolae as membrane reservoir is compromised. We conclude that the P158PfsX22 frameshift introduces a gain of function that gives rise to a dominant negative form of CAV1, defining a new mechanism by which disease-associated mutations in CAV1 impair caveolae assembly.
منابع مشابه
Aberrant caveolin-1–mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension
A heterozygous caveolin-1 c.474delA mutation has been identified in a family with heritable pulmonary arterial hypertension (PAH). This frameshift mutation leads to a caveolin-1 protein that contains all known functional domains but has a change in only the final 20 amino acids of the C-terminus. Here we studied how this mutation alters caveolin-1 function, using patient-derived fibroblasts. Tr...
متن کاملWhole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension.
BACKGROUND Heritable and idiopathic pulmonary arterial hypertension (PAH) are phenotypically identical and associated with mutations in several genes related to transforming growth factor (TGF) beta signaling, including bone morphogenetic protein receptor type 2, activin receptor-like kinase 1, endoglin, and mothers against decapentaplegic 9. Approximately 25% of heritable cases lack identifiab...
متن کاملDe novo formation of caveolae in lymphocytes by expression of VIP21-caveolin.
Caveolae are plasma membrane invaginations, which have been implicated in endothelial transcytosis, endocytosis, potocytosis, and signal transduction. In addition to their well-defined morphology, caveolae are characterized by the presence of an integral membrane protein termed VIP21-caveolin. We have recently observed that lymphocytes have no detectable VIP21-caveolin and lack plasma membrane ...
متن کاملA caveolin-3 mutant that causes limb girdle muscular dystrophy type 1C disrupts Src localization and activity and induces apoptosis in skeletal myotubes.
Caveolins are membrane proteins that are the major coat proteins of caveolae, specialized lipid rafts in the plasma membrane that serve as scaffolding sites for many signaling complexes. Among the many signaling molecules associated with caveolins are the Src tyrosine kinases, whose activation regulates numerous cellular functions including the balance between cell survival and cell death. Seve...
متن کاملIntroduction of Caveolae Structural Proteins into the Protozoan Toxoplasma Results in the Formation of Heterologous Caveolae but Not Caveolar Endocytosis
Present on the plasma membrane of most metazoans, caveolae are specialized microdomains implicated in several endocytic and trafficking mechanisms. Caveolins and the more recently discovered cavins are the major protein components of caveolae. Previous studies reported that caveolar invaginations can be induced de novo on the surface of caveolae-negative mammalian cells upon heterologous expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2017